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Abstract

It is known that charged particles emit radiation when they are accelerated up to high energies. This
is observed in abundance from those particles accelerated within the Large-Hadron Collider, as well as
from the by-products of collisions between these accelerated particles. As a consequence of this, a series
of cascaded emissions or bremsstrahlung is observed in the detectors around these high-energy collisions.
Due to the large number of particles involved in these so-called parton showers, direct matrix element
calculations are not a viable option in trying to model these events. Instead, the known singularity
structure of matrix elements in general is exploited and used to factor out a splitting function, thereby
isolating the effect of individual bremsstrahlung and enabling an iterative approach to modelling parton
showers.

We explore structure within the antenna function for double-gluon emission from a quark-antiquark
pair in the initial state, before they annihilate to form a Z-boson. Within this antenna function, there is
physically interesting structure related to the different configurations that the emitted gluons can take
with respect to the quarks. Specifically, we explore the double-soft limit, wherein both gluons are emit-
ted with negligible momenta, as well as the triple-collinear limit, where both gluons become collinear
with the quark from which they were emitted. To validate the antenna function, we employ a uniform
sampling over its domain and compare the resulting values to direct matrix element calculations. In a
similar fashion, cuts are introduced into the domain of the antenna function to distinguish those points
in phase-space corresponding to double-soft or triple-collinear configurations, thereby enabling a similar
sampling of the derived limits.

Ultimately, having the structure of the antenna function in these singular limits is useful as they are
likely candidates in trying to find a simple overestimate of the full matrix element to enable Monte Carlo
simulations of these events. Current parton shower models view double-gluon emission as iterated single-
emission, and so are not able to account for the interference effects of Feynman diagrams containing two
consecutive gluon emissions. Exploring the double-gluon emission splitting function will therefore aid in
understanding the role of these coherent emissions.
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I would like to thank Professor Peter Skands and Christian Preuss for their supervision throughout
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Introduction

The Large Hadron Collider (LHC) consists of a 27-kilometre particle beamline, to which four particle
detectors are attached. The large radius of the collider is used to accelerate two beams of particles up
to near the speed of light, and are shortly thereafter put on a collision course at each of these detectors.
These collision events occur at extremely high energy scales, and a multitude of particles are observed
within the detectors at these events, such as those within the CMS detector shown in Figure 1.1. The
data from these energetic particle collisions provide an empirical source against which to compare compu-
tational predictions based on the Standard Model of particle physics in the search for new, unexplained
phenomena.

However the cascade of radiation observed at these highly-energetic events remains a challenge to
computationally model, due to the multitude of complex interactions that inevitably occur within these
events. Specifically, we consider the collision of two beams of protons. The highly energetic partons
which compose the protons in these beams are known to emit gluons through bremsstrahlung, and these
gluons themselves are allowed to radiate further partons through interactions governed by Quantum Chro-
modynamics (QCD). Recent experiments at the LHC have used beam energies of the order teraelectron
volt (TeV) and so produce an abundance of chained bremsstrahlung, resulting in a complex parton shower.

Due to the multitude of particles produced in these highly energetic interactions, conventional matrix
element calculations from the underlying Quantum Field Theory (QFT), whose complexity is propor-
tional to O(n! ), are thus not a viable option in trying to model these showers. Much recent work has
contributed to the development of antenna functions, which are mathematical objects that isolate the
effect of bremsstrahlung from the initial particle collisions themselves. This is depicted graphically in
Figure 2.3, wherein multiplication of the Born-level matrix element by the antenna function is able to
reproduce those most significant effects of gluon emission.

Antenna functions therefore present as a potentially powerful tool in trying to simulate parton show-
ers. Broadly speaking, many parton shower algorithms have been created to computationally model these
events, and antenna functions are now being explored in part by the physics group at Monash.

Much recent effort has focussed on the use of antenna functions for single-gluon emission in parton
showers, such as for the process depicted in Figure 2.3. Currently, double-gluon emissions within these
parton showers are modelled through the iterative application of two single-gluon splitting functions
(again similar to that of Figure 2.3). However this fails to capture some important features of coherent
double-gluon emission, those emissions that can’t be viewed in the iterative picture. These coherent
emissions are explored in more detail throughout section 3.2.

We therefore explore antenna functions for double-gluon emission, and the singular structures con-
tained in these double-gluon emission functions which are unique to the physical configurations that
double-gluons can take, as a means to better understand double-gluon emission in parton showers.
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Figure 1.1: One of the first heavy-ion beam collisions recorded at the Compact Muon Solenoid
(CMS) detector at the Large Hadron Collider, on the 25th November 2015. Maximilien Brice,
CERN.
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Theory

2.1 - Feynman Diagrams and Particle Interactions

2.1.1. Relativistic Kinematics

We consider the annihilation of a quark-antiquark pair to form a Z-boson. Each of these particles has
associated with them some four-momentum pi (distinguishing between the four-momentum pi with no
decoration, as opposed to physical three-momentum denoted p⃗i), of the form

pi = (Ei, (p⃗i)x, (p⃗i)y, (p⃗i)z) (2.1)

which lives in Minkowski space, where the inner product between four-vectors is defined to be

a · b = aµgµνb
ν = EaEb − p⃗a · p⃗b (2.2)

where we use the mostly negative convention for the Minkowski metric gµν = diag(1,−1,−1,−1). Due to
extreme energy scales achieved in particle physics, special relativistic effects are important. We therefore
use the relativistic energy-momentum equation in natural units

p2 ≡ p · p = E2 − |p⃗|2= m2, (2.3)

where m is referred to as the invariant mass of the particle. Calculations in particle physics are often done
in the center-of-mass frame, which is the reference frame such that all three-momenta of the particles
sum to zero, ∑

i

p⃗i = 0. (2.4)

The convenience of this frame arises when considering the inner product of the sum of these center-of-mass
four momenta:(∑

i

pi

)2

≡

(∑
i

pi

)
·

(∑
i

pi

)
=

(∑
i

Ei

)2

−

(∑
i

p⃗i

)2

=

(∑
i

Ei

)2

, (2.5)

and we therefore see that the invariant mass of this center-of-mass system, denoted W , corresponds to
the total energy in the system

W = ECM = E1 + E2 + ...+ EN . (2.6)
Importantly, we used the relativistic energy-momentum relation to define W , and thus will correspond to
the invariant mass of the whole system in all frames of reference. The idea of defining physical quantities
in a Lorentz invariant manner, meaning they hold the same value in all frames of reference, is used widely
throughout particle physics as this provides the utility of choosing a particularly simple frame of reference
in which to evaluate a constant, in the knowledge that this result will then hold in all other frames of
reference. Which physical quantities are relevant however depends on the configuration of the system.

2.1.2. Feynman Diagrams

Physical particle interactions are described through Feynman diagrams. In these diagrams, incoming
particles, called initial state particles drawn on the left of the diagram, can interact with each other
through internal lines and vertices, called virtual propagators, which then flow with time to the right of
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θ

θ
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p3 = 0
↔

q

q̄

Z

Figure 2.1: Left: General configuration of a quark anti-quark pair in the initial state annihilating
to form a Z-boson in the final state, within the center-of-mass frame of the Z-boson. Right: Corre-
sponding Feynman diagram for the qq̄ → Z process. The Feynman diagram does not depend on a
particular frame.

the diagram where outgoing particles, called final state particles, can be found. The internal propagators
are referred to as virtual as they are never physically observed. They are only the means by which initial
state particles physically translate into final state particles.

Considering the process of quark annihilation into a Z-boson, denoted qq̄ → Z, the left side of Figure
2.1 depicts a general configuration of the initial state quarks and final state Z-boson, in the center-of-mass
frame. The joint constraints that we are in the center-of-mass frame, combined with energy-momentum
conservation, imply that this entire system is parametrised by two degrees of freedom, namely θ and an
azimuthal ϕ. The right side depicts the corresponding Feynman diagram of the qq̄ → Z process. We
observe that there are no internal propagators in this Feynman diagram, as the direct annihilation process
is allowed.

Figure 2.2 depicts two different structures that occur within Feynman diagrams. On the left-hand
side is an s-channel process, where particles a and b annihilate to form a virtual particle, which then at a
later point decays into particles c and d. On the right-hand side is a t-channel process, where particles a
and c scatter off each-other after interacting through the virtual particle. Taking an example from QED,
electron scattering e−e− → e−e− involves a T-channel process wherein the electrons repel each-other by
interacting through a virtual photon.

Energy-momentum conservation implies that total four-momentum is conserved from the initial state
into the final state. For both processes in Figure 2.2, this means that

pa + pb = pc + pd. (2.7)

Specifically, denoting the four-momentum of the virtual particle as Ps and Pt for the s and t channel
diagrams respectively, we can determine the four-momentum of the virtual propagators as

s channel: Ps = pa + pb = pc + pd, (2.8)
t channel: Pt = pa − pc = pb − pd. (2.9)

In the case of s channel processes, we see that Ps = pa + pb corresponds to the total four-momenta of the
initial state and therefore we have W 2 = E2

CM = P 2
s .

6
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c

d

a c

b d

Figure 2.2: Two types of Feynman diagrams: S-channel processes (left) and T-channel processes
(right). Time flows from left to right, with external legs connected through virtual propagators. In
both cases the total center-of-mass energy squared is given by s = (pa + pb)

2.

2.1.3. Mandelstam Variables

One family of kinematic variables used widely throughout this project are the Mandelstam variables.
Again considering the particles of Figure 2.2, the Mandelstam variables are defined as

s = (pa + pb)
2, (2.10)

t = (pa − pc)
2, (2.11)

u = (pa − pd)
2. (2.12)

For more complicated processes, the Mandelstam variables are explicitly denoted with respect to the
particles they describe, for example sab = (pa + pb)

2 and tij = (pi − pj)
2. We can also introduce a

Mandelstam s variable for three particles, such that

sijk = (pi + pj + pk)
2. (2.13)

As these variables are described as the square of some four-momenta, they can be written in the form

sab = (pa + pb) · (pa + pb) = ((pa)
µ + (pb)

µ) ((pa)µ + (pb)µ) . (2.14)

The indices of these terms are therefore fully contracted, meaning that these Mandelstam variables are
Lorentz invariant quantities. This can also be seen by considering the processes of Figure 2.1; considering
the S-channel process, we have that W 2 = (pa + pb)

2 = s and so the Mandelstam s variable corresponds
to the square of the center-of-mass energy in the system.

2.1.4. Matrix Elements

Each Feynman diagram corresponds to a mathematical expression that can be derived using the laws
of QED and QCD, however in practice these laws have been abstracted to the level of Feynman rules
which prescribe factors for each element of the Feynman diagram that can be combined to give the full
expression. To create a complete picture for some given interaction, all the possible Feynman diagrams
for that process must be considered. The mathematical expressions from all possible Feynman diagrams
can then be combined to create the corresponding squared matrix element, which can be interpreted as
a probability density for the process, given some physical particle configuration.

Generally speaking, we can consider a system of particles |Ψi⟩ that undergo some interaction Û , after
which we want to know the probability that these particles finish in some final state |Ψf ⟩. The matrix
element for this process is denoted

Mfi = ⟨Ψf | Û |Ψi⟩ , (2.15)
such that the probability density of this process is given by

P (Initial→ Final) ∝ |Mfi|2 =
∣∣∣⟨Ψf | Û |Ψi⟩

∣∣∣2 . (2.16)
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In the context of particle physics, ⟨Ψf | Û |Ψi⟩ are expressed in terms of Feynman diagrams such that
we can model particle interactions in the same manner, as demonstrated in Equation 2.17 for quark-
antiquark annihilation into a Z-boson. Note that Feynman diagrams are left in pictorial form when they
appear in equations, as their corresponding mathematical expressions can be quite complex.

P (qq̄ → Z) ∝ |Mfi (pq, pq̄, pZ)|2 =

∣∣∣∣∣∣∣∣∣∣∣

q

q̄

Z

∣∣∣∣∣∣∣∣∣∣∣

2

. (2.17)

In general however, there are many Feynman diagrams for a particular process and therefore as the
squared matrix element is a probabilistic quantity, it must take into consideration all possible diagrams.
Considering the process of quark-antiquark annihilation into a Z-boson and a gluon, denoted qq̄ → Zg,
there are two possible Feynman diagrams for this process wherein the gluon can be emitted from either
quark or antiquark, as shown below in Equation 2.18,

P (qq̄ → Zg) ∝ |Mfi (pq, pq̄, pZ , pg)|2 =

∣∣∣∣∣∣∣∣∣∣∣

q

q̄

g

Z +

q

q̄ g

Z

∣∣∣∣∣∣∣∣∣∣∣

2

.

(2.18)

When multiple Feynman diagrams must be taken into account for a given process, squaring the matrix
elements results in a cross-multiplication between different Feynman diagrams in the final result. The
mathematical expressions of these diagrams are complex numbers, and so this cross-multiplication results
in interference effects between different diagrams.

We also observe that for processes involving a high number of particles, there are many more pos-
sible Feynman diagrams contribute to the process, and so the complexity of the final expression grows
considerably and rapidly.

2.2 - Parton Showers

Due to this relationship between number of particles and increase in mathematical complexity in matrix
element calculations, evaluating the matrix element for an entire parton shower containing multitudes
of bremsstrahlung is not a viable option. One approach to modelling the cascaded emission observed in
parton showers is through an iterative picture.

2.2.1. Antenna Functions

Matrix elements have known, general singularity structures. The nature of these singularities is further
explored in Section 3.1, however this known singularity structure can be exploited; near the singularities,
it will be those singular terms that start to dominate, such that an object called the splitting function can
be factorised out of the matrix element. In this project, we explore one type of splitting function referred
to as an antenna function. Naturally, different interactions involve different singularity structures, and
therefore different antenna functions can be derived for different processes. In the context of a parton
shower algorithm, we can expand around the singularities created by the emission of a gluon, as happens
through physical bremsstrahlung. By factoring out the gluon antenna function, we isolate the effect of
gluon emission from the underlying, simpler matrix element, called the Born-level matrix element. This
process is depicted in Figure 2.3 for the case of gluon emission from a quark-antiquark pair, before they
annihilate to form a Z-boson.

We can directly compare this to the matrix element calculation shown in Equation 2.18; already we
observe the simplification of only having to multiply a much simpler matrix element by this antenna func-
tion, as opposed to what would otherwise be the calculation of two, more complicated Feynman diagrams.
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∣∣∣∣∣∣∣∣∣∣
q

q̄

g

Z +

q

q̄ g

Z

∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣
q

q̄

Z

∣∣∣∣∣∣∣∣∣∣

2

·

q

q̄

g

(2.19)

Figure 2.3: Factorisation of the qq̄ → Zg process into the qq̄ → Z matrix element and the antenna
function for single-gluon emission, A0

3.

Having isolated the effect of gluon emission, this antenna function is iteratively applied through parton
shower algorithms to model the jets of particles seen in particle detectors. The same factorisation process
can be applied in the case of double-gluon emission, to isolate the effect of this double emission from the
Born-level matrix element. In this project, explore the structure of both single and double-gluon emission
antenna functions in Chapter 3.

2.3 - Crossing Symmetry

The utility of antenna functions lies not only in how they isolate the effect of particle emission, they
can also be applied to the family of processes that share a simialar singularity structure, beyond the
original process from which it was factorised. Considering the single-gluon emission antenna function,
we can apply this to any process from which a gluon is emitted from a quark-antiquark pair in the initial
state, for example the qq̄ → Hg process. There is a caveat however, in that to directly apply this antenna
function, the quarks from which this gluon emission is achieved must be in the initial state. To extend the
applicability of previously derived antenna functions, we can take advantage of an underlying symmetry
of matrix elements known as crossing symmetry.

Crossing symmetry refers to an invariance of particle physics wherein the same matrix element of
a process with some particle a in the initial state, can be used to describe the same process where the
corresponding antiparticle ā appears in the final state, with negated four-momenta. The reverse is also
true, such that generally speaking, interchanging between particles and antiparticles and negating their
momenta allows crossing between initial and final states.

Considering the S-channel process of electron scattering e−e− → e−e−, we can cross one of the
initial-state electrons into the final-state by negating its momentum and replacing it with a positron,
and similarly cross a final-state electron into an initial-state positron, such that we recover the T-channel
process of electron-positron annihilation e−e+ → e−e+. This is depicted in Figure 2.4. As these processes
are connected through crossing symmetry, they can be described by the same underlying function.

As antenna functions are derived from matrix elements, they also obey crossing symmetry. This
means that the antenna function for gluon emission from a quark-antiquark pair in the initial state can
be crossed into an antenna function describing gluon emission from a quark-antiquark pair in the final
state, enabling more flexibility in what processes this antenna function can be applied to.

9
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Figure 2.4: The same mathematical functions can be used when modelling electron-positron an-
nihilation e−e+ → e−e+ and electron scattering e−e− → e−e−, as these processes are related by
crossing symmetry.
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Analysis & Results

3.1 - The A0
3 Antenna Function

We first explore the structure and limits of the single-gluon emission antenna function for a quark-
antiquark in the final state, which is denoted A0

3 in [5]. Labelling the final state quark 1, the anti-quark
as 2 and the emitted gluon as 3, A0

3 is given as [5]

A0
3 (p1, p2, p3) =

1

s123

(
s13
s23

+
s23
s13

+ 2
s12s123
s13s23

)
. (3.1)

We explicitly observe s13 and s23 in the denominator of A0
3, and we therefore want to characterise physical

configurations where these variables are small enough that the antenna functions becomes singular, as
these are the physical configurations which will likely be most abundantly observed. Parton showers are
modelled occurring at energies on the order of GeV and TeV, while the quarks we model have mass
far below this energy scale. We therefore assume that we are in the ultra-relativistic limit, wherein the
masses of these particles can be neglected as they are insignificant compared to their respective momenta.
Examining the structure of Mandelstam variables in the ultra-relativistic limit, we see that

sij = (pi + pj)
2 tij = (pi − pj)

2

= p2i + 2pi · pj + p2j = p2i − 2pi · pj + p2j

= m2
i + 2pi · pj +m2

j = m2
i − 2pi · pj +m2

j

= 2pi · pj , = −2pi · pj .

when mi = mj = 0. For the remaining discussion, we assume the ultra-relativistic limit such that
sij = 2pi · pj as above, due to the fact that quarks within the colliding proton beams are usually low
mass and carry extremely high momenta. Using this, we have

s123 = (p1 + p2 + p3)
2

= p21 + p22 + p23 + 2p1 · p2 + 2p1 · p3 + 2p2 · p3
= s12 + s13 + s23.

Using the Minkowski product, we know

pi · pj = EiEj − p⃗i · p⃗j
= EiEj − |p⃗i||p⃗j | cos θij ,

where θij is the angle between particles i and j. Here, we can use relativistic energy-momentum conser-
vation for massless particles, giving Ei = |p⃗i| such that

pi · pj = EiEj (1− cos θij) . (3.2)

We therefore see that A0
3 will become singular in the limit of soft radiation, where E3 → 0, or collinear

radiation, where either θ13 → 0 or θ23 → 0.
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3.1.1. Soft Radiation

Soft radiation of gluon 3 is parametrised first through the substitution p3 → λp3 and then taking a series
expansion of A0

3 (λ) in the limit λ → 0. We first examine the impact of these λ substitutions on the
Mandelstam variables;

s12 = 2p1 · p2 → 2p1 · p2 = s12, (3.3)
s13 = 2p1 · p3 → 2p1 · λp3 = λs13, (3.4)
s23 = 2p2 · p3 → 2p2 · λp3 = λs23. (3.5)

We therefore make the substitutions s13 → λs13 and s23 → λs23, then taking the first three terms of the
Laurent expansion to get

lim
λ→0

A0
3 (λ) =

2s12
λ2s13s23

+
s213 + s223
s12s13s23

−
λ(s13 + s23)

(
s213 + s223

)
s212s13s23

+O
(
λ3
)
. (3.6)

We can therefore see that in the limit of soft radiation,

A0
3 →

2s12
s13s23

, (3.7)

and this is referred to as the Eikonal or Dipole factor [2].

3.1.2. Collinear Radiation

Collinear radiation of particle 3 means that either θ13 → 0 or θ23 → 0. We examine the limit of particles
3 and 1 becoming collinear, with the results being easily interchangeable between particles 1 and 2.

The limit of θ13 → 0 impacts only the s13 invariant, wherein

lim
θ13→0

s13 = lim
θ13→0

2E1E3 (1− cos θ13) = 0. (3.8)

The limit of collinear radiation is therefore sufficiently parametrised by the substitution s13 → λs13,
followed again by a series expansion about λ→ 0, given below

lim
θ13→0

A0
3 (λ) =

2s212 + 2s12s23 + s223
λs13s23(s12 + s23)

+
λs13

s23(s12 + s23)
. (3.9)

In this limit where θ13 ≈ 0, the four-momenta p1 and p3 become linearly dependent. Considering a
particle I with momentum pI = p1 + p3 wherein I radiates gluon 3 and thereafter is denoted particle 1,
the linear dependence of these final momenta can be established by first defining a momentum fraction
z ∈ [0, 1], such that the radiated gluon has momentum zpI , leaving the remaining (1 − z)pI for particle
1. Linear dependence of these momenta are thus achieved, as they are scalar multiples of the same pI .
Inserting these linearly dependent momenta into the Mandelstam variables, we see that

s12 = 2p1 · p2 → 2(1− z)pI · p2 = (1− z)sI2, (3.10)
s23 = 2p2 · p3 → 2p2 · zpI = zsI2. (3.11)

Making these substitutions into the first term of the Laurent series above, we have the form of A0
3 in the

limit of collinear radiation
lim

θ13→0
A0

3 =
1

s13z

(
2− 2z + z2

)
, (3.12)

which agrees with the form stated in [5].

3.2 - The A0
4 Antenna Function

We now explore the qq̄ → Zgg process, with gluon emission from quarks in the initial state. The corre-
sponding double-gluon emission antenna function is denoted A0

4 in [5] and is depicted in Figure 3.1.

The function A0
4 for double-gluon emission from quarks in the final state is provided in [5], therefore

the desired initial state function can be obtained through crossing symmetry. The final state A0
4 quark
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Figure 3.1: Factorisation of the qq̄ → Zgg matrix element using the double-gluon emission antenna
function, A0

4.

and antiquark are denoted particles 1 and 2 respectively, with the gluons denoted 3 and 4. To differen-
tiate between particles in the initial and final states, a different notation is used in the crossed A0

4, with
the initial state quarks denoted a and b respectively, with the gluons denoted j and k.

In the notation of [5], an overall factor of s1234 appears in A0
4 which denotes a four-particle Mandelstam

variable. To simplify later substitutions, we expand this as

s1234 = (p1 + p2 + p3 + p4)
2

= s12 + s13 + s14 + s23 + s24 + s34.

We now compare the conservation equations for these initial and final-state processes,

Final-state process Z → qggq̄ pZ = p1 + p2 + p3 + p4, (3.13)
Final-state process qq̄ → Zgg pa + pb = pZ + pj + pk. (3.14)

The required crossing substitutions are therefore

p1 → −pb, p3 → pj ,

p2 → −pa, p4 → pk,

where the last two substitutions are purely notational. Note that pZ is not explicitly changed, as it is
fully prescribed by fixing all other momenta. These substitutions are visualised in Figure 3.2 We can
then use these momentum-level substitutions and determine substitutions at the level of Mandelstam
variables;

s12 = (p1 + p2)
2 → (−pa − pb)

2 = sab, (3.15)
s13 = (p1 + p3)

2 → (−pa + pj)
2 = −saj , (3.16)

s14 = (p1 + p4)
2 → (−pa + pk)

2 = −sak, (3.17)
s23 = (p2 + p3)

2 → (−pb + pj)
2 = −sbj , (3.18)

s24 = (p2 + p4)
2 → (−pb + pk)

2 = −sbk, (3.19)
s34 = (p3 + p4)

2 → (pj + pk)
2 = sjk, (3.20)

s134 = (p1 + p3 + p4)
2 → (−pa + pj + pk)

2 = −saj − sak + sjk, (3.21)
s234 = (p2 + p3 + p4)

2 → (−pb + pj + pk)
2 = −sbj − sbk + sjk. (3.22)

The resulting initial-state A0
4 antenna function is reported in Appendix 5.

3.2.1. The Double-Soft Limit

Structures arising within the antenna function for single gluon emission, related to important physical
configurations achieved by that gluon, also appear in a more general manner for double-gluon emission.
Here we have the possibility for not only soft emission of one gluon, but simultaneous soft emission of
both gluons, referred to as the double-soft limit.

In a similar manner to single-soft emission, the soft emission of both gluons is parametrised by
substituting

pj → λpj , pk → λpk, (3.23)
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g

Figure 3.2: Left: Feynman diagram where the quark, antiquark and gluons are all in the final
state. Right: Feynman diagram where the quark and antiquark are in the initial state, with both
gluons in the final state. These antenna functions are related through crossing symmetry.

and then expanding around λ = 0. Determining the Mandelstam variable level effect of these substitu-
tions, we see

sab = (pa + pb)
2 → (pa + pb)

2 = sab, (3.24)
saj = (pa + pj)

2 → (pa + λpj)
2 = λsaj , (3.25)

sak = (pa + pk)
2 → (pa + λpk)

2 = λsak, (3.26)
sbj = (pb + pj)

2 → (pb + λpj)
2 = λsbj , (3.27)

saj = (pb + pk)
2 → (pb + λpk)

2 = λsbk, (3.28)
sjk = (pj + pk)

2 → (λpj + λpk)
2 = λ2sjk. (3.29)

In the case of single-soft emission, the Mandelstam level variables were at most O(λ), whereas here we
see that the substitution sjk → λ2sjk is O(λ2). Therefore, while the Laurent expansion in λ = 0 for
single-soft emission had a singularity of order O

(
1
λ2

)
, we expect the Laurent expansion for double-soft

emission to be O
(

1
λ4

)
. This is confirmed in the series expansion where we indeed see a singularity of

order O
(

1
λ4

)
. This will therefore be the term that dominates in double-soft configurations, such that the

form of A0
4 in the double soft limit becomes

A0
4 →

2s2absaksbj
sajsbk(saj + sak)2(sbj + sbk)2

+
2s2absbj

sbk(saj + sak)2(sbj + sbk)2
+

2s2absak
saj(saj + sak)2(sbj + sbk)2

+
2s2ab

(saj + sak)2(sbj + sbk)2
+

2sabs
2
aks

2
bj

sajsbksjk(saj + sak)2(sbj + sbk)2

+
6sabs

2
aksbj

sajsjk(saj + sak)2(sbj + sbk)2
+

4sabs
2
aksbk

sajsjk(saj + sak)2(sbj + sbk)2

+
4sabsajs

2
bj

sbksjk(saj + sak)2(sbj + sbk)2
+

6sabsaks
2
bj

sbksjk(saj + sak)2(sbj + sbk)2
+

2sabsajsbj
sjk(saj + sak)2(sbj + sbk)2

+
8sabsaksbj

sjk(saj + sak)2(sbj + sbk)2
− 2sabsajsbk

sjk(saj + sak)2(sbj + sbk)2
+

2sabsaksbk
sjk(saj + sak)2(sbj + sbk)2

+
2s2ajs

2
bk

s2jk(saj + sak)2(sbj + sbk)2
+

2s2aks
2
bj

s2jk(saj + sak)2(sbj + sbk)2
− 4sajsaksbjsbk

s2jk(saj + sak)2(sbj + sbk)2
.

(3.30)

3.2.2. The Triple-Collinear Limit

Similarly to the case of collinear emission for a single gluon, within the double-gluon antenna function
we can explore the limit of both gluons becoming collinear with their parent, referred to as the triple
collinear limit.

Thus far, we have labelled the quarks in the initial state a and b respectively, with the gluons in the
final state as j and k respectively. As the gluon emission happens from quarks in the initial state, we
distinguish between the quark before any emission (the aforementioned a) and the quark after double-
gluon emission, denoted by a capital A. The same distinction is made between pre-emission b and
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post-emission B. In terms of four-momentum conservation, this can be stated as

pa + pb = pA + pB + pj + pk, (3.31)

at which point the post-emission quarks annihilate to form the Z-boson

pA + pB = pZ . (3.32)

In the triple-collinear limit, both gluons are emitted from the same quark and in this way their mo-
menta become collinear, giving rise to singularities in the antenna function as described in the structure
of Equation 3.2; strictly speaking, collinear emission of gluon j from quark a alongside collinear emission
of gluon k from quark b would lead to an overall anti-collinear configuration, however in this case we have
θjk = π, which does not give rise to singularities in the antenna function and therefore is not considered
within the triple-collinear limit.

With this in mind, we explore the collinear-emission structure of

pa = pA + pj + pk, (3.33)

with the same derivation being directly applicable to collinear emission from antiquark b. With the
same justification as in the simpler case of double-collinear emission, the angles θAj , θAk and θjk are
parametrised going to zero through the Mandelstam variable level substitutions

sAj → λsAj , (3.34)
sAk → λsAk, (3.35)
sjk → λsjk, (3.36)

enabling then a series expansion around λ → 0. However the invariants of A0
4 are in terms of four-

momentum pa, not pA as in the above substitutions. We therefore use Equation 3.33 to express the
variables in terms of pA, before using the λ substitutions above. First examining sab, we see that

sab = (pa + pb)
2 = ((pA + pj + pk) + pb)

2

= (pA + pj + pk)
2
+ p2b + 2pb · (pA + pj + pk)

→ 2pb · (pA + pj + pk) ,

using the fact that b is a massless particle, and

sAjk = (pA + pj + pk)
2
= sAj + sAk + sjk → λ (sAj + sAk + sjk) (3.37)

which therefore goes to zero. To continue, we introduce momentum fractions in an analogous manner to
the double-collinear case, such that for collinear particles A, j and k we have

pA → zA (pA + pj + pk) = zApa, (3.38)
pj → zj (pA + pj + pk) = zjpa, (3.39)
pk → zk (pA + pj + pk) = zkpa, (3.40)

wherein zA + zj + zk = 1. In this way, conservation of four-momentum is respected and these particles
are now collinear. With these momentum fractions, we see that

2pb · (pA + pj + pk)→ 2pb · (zApa + zjpa + zkpa)

= 2 (zA + zj + zk) pb · pa
= sab,

and we therefore explicitly see that sab is unchanged in the triple-collinear limit. This is to be expected,
as sab corresponds to the center-of-mass energy squared. Next exploring saj , we see that

saj = (pa + pj)
2
= ((pA + pj + pk) + pj)

2

= p2A + 4p2j + p2k + 2sAj + 2sjk + sAk

→ 2λsAj + 2λsjk + λsAk

= λsaj .
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In the exact same manner,

sak = (pa + pk)
2 = ((pA + pj + pk) + pk)

2 → λsak. (3.41)

The remaining invariants sbj and sbk are unaffected by the λ substitutions, and so all that remains is
to substitute the momentum fractions.

sbj = (pb + pj)
2 → (pb + zjpa)

2 = zjsab, (3.42)
sbk = (pb + pk)

2 → (pb + zkpa)
2 = zksab. (3.43)

We can now determine the triple-collinear limit of A0
4 by inserting these derived substitutions, and then

applying a series expansion about λ = 0. This limit is given below in equation 3.44.

A4
0 →

2s2aj
s2jk(saj + sak − sjk)2

− 2s2ak
sajsjk(saj + sak − sjk)2

− 4sajzj
s2jk(zj + zk)(saj + sak − sjk)

−
sakz

3
j

sajsjk(zj − 1)(zj + zk − 1)(saj + sak − sjk)
+

z3j
sjk(zj − 1)(zj + zk − 1)(saj + sak − sjk)

+
2z2j

saj(zj − 1)zk(saj + sak − sjk)
−

sakz
2
j

sajsjk(zj − 1)zk(saj + sak − sjk)

−
2z2j

sjk(zj − 1)zk(saj + sak − sjk)
+

3sakz
2
j

sajsjk(zj − 1)(zj + zk − 1)(saj + sak − sjk)

+
sakz

2
j

sajsjk(zj + zk)(saj + sak − sjk)
−

z2j
sjk(zj + zk)(saj + sak − sjk)

− 5zj
saj(zj − 1)zk(saj + sak − sjk)

+
2sakzj

sajsjk(zj − 1)zk(saj + sak − sjk)

+
4zj

sjk(zj − 1)zk(saj + sak − sjk)
− 3sakzj

sajsjk(zj − 1)(zj + zk − 1)(saj + sak − sjk)

− zj
saj(zj + zk)(saj + sak − sjk)

− 2sakzj
sajsjk(zj + zk)(saj + sak − sjk)

+
2zj

sjk(zj + zk)(saj + sak − sjk)

+
6

saj(zj − 1)zk(saj + sak − sjk)
− 2sak

sajsjk(zj − 1)zk(saj + sak − sjk)

− 4

sjk(zj − 1)zk(saj + sak − sjk)
− 1

saj(zj − 1)(zj + zk − 1)(saj + sak − sjk)

+
2sak

sajsjk(zj − 1)(zj + zk − 1)(saj + sak − sjk)
+

1

sjk(zj − 1)(zj + zk − 1)(saj + sak − sjk)

+
2

saj(zj + zk)(saj + sak − sjk)
+

2sak
sajsjk(zj + zk)(saj + sak − sjk)

− 6

sjk(zj + zk)(saj + sak − sjk)
− 2

saj(zj − 1)zjzk(saj + sak − sjk)

− 2

sajzj(zj + zk)(saj + sak − sjk)
− sjk

saj(saj + sak − sjk)2
− 3saj

sjk(saj + sak − sjk)2

− sak
sjk(saj + sak − sjk)2

+
2sak

saj(saj + sak − sjk)2
+

2

(saj + sak − sjk)2
+

2z2j
s2jk(zj + zk)2

.

(3.44)

3.3 - Phase Space Sampling

3.3.1. Sampling A0
4

We now validate our initial-state A0
4, alongside its double-soft and triple-collinear limits. Due to the

complexity of the closed-form expression for the matrix element qq̄ → Zgg, we perform a numerical com-
parison of the functions in Figure 3.1. Dividing both sides of Figure 3.1 by the Born-level matrix element
such as to isolate the matrix elements on the left-hand side, we evaluate both sides of this equation at
uniformly sampled points in their domain, produce a histogram of the values generated by both the ratio
of matrix elements, and values generated by A0

4, wherein we will be able to see how well these values agree.
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Given some initial configuration, here being the initial four-momenta of the quark and antiquark,
the RAMBO [4] algorithm generates uniformly random four-momenta for the resulting final-state Zgg
configuration, whilst respecting energy and momentum conservation. Quark-antiquark annihilation is
often discussed in the context of two colliding proton beams, wherein it is between the constituent quarks
within the protons of these two opposing beams that the hard interaction occurs. To generate some
configuration for the initial-state quarks, we therefore define some variable center-of-mass energy ECM,
and from this define the four-momenta of two proton beams, denoted p1 and p2, with center-of-mass
energy ECM

p1 =

(
ECM

2
, 0, 0,

ECM

2

)
, (3.45)

p2 =

(
ECM

2
, 0, 0,−ECM

2

)
, (3.46)

such that
W 2 = (p1 + p2)

2 = (ECM, 0, 0, 0)
2
= E2

CM (3.47)

as desired. To then simulate the constituent quarks colliding at some fraction of this total beam energy,
a (pseudo)random number r is generated between 0 and 1, from which we can define an energy fraction

x =

(
1− mZ

ECM

)
· r +

(
mZ

ECM

)
, (3.48)

which is then applied to both beam momenta p1 and p2 which simulates collision of quarks within
carrying some fraction of the total momentum of the beam. To justify our definition of x, we examine
the centre-of-mass energy of the quark collision within these two proton beams, given by

Ŵ 2 = (xp1 + xp2)
2
= x2E2

CM, (3.49)

such that Ŵ = ÊCM = xECM. From its definition, this energy fraction is bounded between
mZ

ECM
≤ x ≤ 1. (3.50)

In the case of x = 1, we have ÊCM = ECM such that the quarks are colliding with the full momentum of its
proton. Conversely, the lower bound of x = mZ/ECM corresponds to ÊCM = mZ , which is kinematically
the lowest possible energy the quark system can take in order to be able to produce the Z-boson. This
definition of x therefore ensures that we randomly sample different quark momenta, whilst still having
enough energy in the collision to produce the desired qq̄ → Zgg process.

We can therefore define the quark momenta pa = xp1 and pb = xp2, from which the RAMBO algo-
rithm can generate pZ , pj and pk. Using these momenta, we can apply MadGraph matrix elements [1]
without requiring their closed-form expressions. Both RAMBO and MadGraph are interfaced through
their implementation in Pythia 8.3 [6]. The resulting histogram of values from both sides of this equation,
evaluated at 107 phase-space points with ECM = 10TeV and binned on a logarithmic x-axis in 500 bins
between 0 and −12, are plotted in Figure 3.3. We observe that values using the antenna function indeed
align with those evaluated from the matrix elements.

We can also explore what effect changing the center-of-mass energy ECM has on the distribution of
values produced. Kinematically, the centre-of-mass energy must be at least mZ = 91.19GeV in order
to be able to produce the Z-boson. We therefore sample with ECM = 100GeV such that a Z-boson
can be produced alongside the gluons. We also choose to sample with ECM = 10TeV to replicate the
energy scales currently being achieved at the LHC. An intermediate energy ECM = 1TeV is also used as
a half-way point between these upper and lower bounds.

Thus far, we have explored A0
4 as a function only of the particle momenta. However, [5] presents the

double-gluon antenna function with dependence also on an ϵ parameter, where ϵ represents how close
we are to the singularities around which the antenna function was derived. Setting ϵ = 0 represents a
domain in which the antenna function is most valid, with increasing values of ϵ moving further from
these singularities. We therefore also produce histograms for ϵ values of 0.3, 0.2 and finally 0 to examine
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Figure 3.3: Histogram of values generated by the A0
4 antenna function, alongside values generated

from the ratio |Mfi|2full /|Mfi|2Born at uniformly sampled points in their domain, for a center-of-mass
energy ECM = 10TeV and plotted on a logarithmic x-axis. Agreement between these histograms
demonstrates a correctly factorised A0

4 antenna function.

changes in the histogram distribution as we approach ϵ = 0.

Denoting the full qq̄ → Zgg matrix element as |Mfi|2full and the Born-level matrix element as
|Mfi|2Born such that the factorisation of Figure 3.1 can be written as

|Mfi|2full = |Mfi|2Born ·A
0
4, (3.51)

we rearrange this equation
|Mfi|2Born ·A

0
4

|Mfi|2full
= 1 (3.52)

and therefore sample computed values of the fraction on the left-hand side. From this theoretical equation,
we expect the histograms to form delta-function distributions about zero (due to being plotted on a
logarithmic x-axis). The results of this sampling are shown in Figure 3.4 with values being placed into
100 bins between −0.2 and 0.2. We indeed observe the histogram distributions converging toward a
delta-function distribution about x = 0 as ϵ→ 0, further validating our initial-state A0

4 antenna function.

3.3.2. Sampling the double-soft and triple-collinear limits

We can not directly apply the uniform sampling method of Section 3.3.1, as only a subset of points in
the domain of these functions can be considered as corresponding to double-soft or triple-collinear con-
figurations. We therefore establish cuts in the phase space of these functions, to distinguish whether a
given point corresponds to either of these limits.

These cuts are based on dimensionless invariants, given as

yajk =

∣∣∣∣saj + sak + sjk
sab + sjk

∣∣∣∣ , ybjk =

∣∣∣∣sbj + sbk + sjk
sab + sjk

∣∣∣∣ . (3.53)

Considering the configuration where a, j and k are triple-collinear, we showed in Section 3.2.2 that in-
variants saj , sak and sjk will all be small with respect to the center-of-mass energy sab, and therefore
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(a) ECM = 100GeV (b) ECM = 1TeV

(c) ECM = 10TeV

Figure 3.4: Histogram of |Mfi|2Born · A
0
4/|Mfi|2full evaluated at uniformly random distributed

points in their domain, plotted on a logarithmic x-axis with 100 bins between -2 and 2. As ϵ → 0,
distributions converge toward a delta-function at 0 as expected from the factorisation relation. The
counts in these plots are normalised such that they sum to unity.

we expect yajk to be small in the ajk triple-collinear limit. At the same time, invariants sbj and sbk,
while dependent on momentum fractions zj and zk, are not expected to be small with respect to sab. We
therefore distinguish the ajk triple-collinear limit as points in the domain where yajk ≤ δ for some ap-
propriately small cutoff δ, whilst ybjk > δ. Similarly, in the bjk triple-collinear limit, we expect ybjk ≤ δ
whilst yajk > δ.

We can also consider the case where both yajk and ybjk are small with respect to sab. This implies that
the momenta pj and pk are small when compared to pa and pb, and therefore corresponds to the double-
soft configuration. We therefore establish the phase space cut for this limit as both yajk < δ and ybjk < δ.

Applying these phase space cuts with δ = 0.003 we generate particle four-momenta as in Section
3.3.1, establish if the configuration is either triple-collinear or double-soft and if so, bin values from the
corresponding limit, with respect to Equation 3.52. This sampling method is applied over the same
107 phase-space points, with values being placed into 100 bins between −0.25 and 0.25. While we still
expect the functions to form delta-distributions about 0, precisely what fractions of the 107 phase-space
points we expect to represent double-soft or triple-collinear configurations will vary as a function of ECM.
Considering ECM = 100GeV, production of the Z-boson with mass mZ = 91.19GeV means there is not
much kinematic freedom for the emitted gluon. As a result, we expect that a much larger fraction of the
phase-space points will be either double-soft or triple-collinear when sampling with ECM = 100GeV as
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opposed to ECM = 10TeV, as there will be much less momentum available for the gluons to take from
the interaction.

The resulting histograms for this phase-space sampling of the double-soft and triple-collinear limits
of A0

4 are presented in Figure 3.5, alongside the number of points these functions were sampled at (those
satisfying the corresponding δ condition). We again observe convergence of the histogram distributions
toward a delta-function centered about 0 for ϵ → 0. We do however observe a spreading of the triple-
collinear limit distribution with increasing energy scale, however they are all dominated by the delta-
function shaped peak near zero.
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(a) ECM = 100GeV, N = 250974 (b) ECM = 100GeV, N = 272863

(c) ECM = 1TeV, N = 2432 (d) ECM = 1TeV, N = 2783

(e) ECM = 10TeV, N = 229 (f) ECM = 10TeV, N = 358

Figure 3.5: Histograms of |Mfi|2Born · A
0
4/|Mfi|2full, where phase-space cuts have been introduced

with δ < 0.003 and the corresponding double-soft or triple-collinear limit of A0
4 has been substituted,

plotted on a logarithmic x-axis with 100 bins between -0.25 and 0.25. We again see that the distri-
butions are dominated by a δ-function near x = 0 as ϵ→ 0. The counts in these plots are normalised
such that they sum to unity.
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Discussion

When sampling the double-soft and triple-collinear functions, it is important that the cutoff invariants
y and δ cutoff value are used cohesively, such that as many points can be sampled as possible in order
to validate these functions, while still ensuring that these points lie within the appropriate phase-space
regions. The form of the dimensionless invariants yajk and ybjk given in Equation 3.53 are actually the
invariants used for quark pairs in the final state. It therefore seems natural that to find the corresponding
invariant for quark pairs in the initial state, we should apply the crossing substitutions from Equation
3.22. This would lead to invariants

yajk =

∣∣∣∣−saj − sak + sjk
sab + sjk

∣∣∣∣ , ybjk =

∣∣∣∣−sbj − sbk + sjk
sab + sjk

∣∣∣∣ . (4.1)

While applying the phase space cut yijk < δ here does still capture the required limits wherein sij , sik
and sjk are all arbitrarily small with respect to sab, it also captures an extra limit where sjk ≈ sij + sik.
This can be re-arranged to give

sin2
(
θjk
2

)
≈ Ea

Ek
sin2

(
θaj
2

)
+

Ea

Ej
sin2

(
θak
2

)
(4.2)

in the case i = a, demonstrating that this condition does not strictly select for double-soft or triple-
collinear configurations. We therefore use the same form of the yijk dimensionless invariants for our
initial-state quark pair as is used for final-state particles, to ensure these extra phase-space points outside
the triple-collinear or double-soft region are not included.

An important property we expect to see within both A0
4 as well as its double-soft and triple-collinear

limits is that of scale invariance. The parton shower process begins with the central hard collision of
two particles; the products of this collision thereafter radiate further bremsstrahlung, and those products
themselves can undergo further radiation, such that a self-similar structure arises within these parton
showers as you look at increasingly small energy scales. A cutoff must however be placed on this show-
ering process, as the combined Feynman diagram structure relevant to this process at higher energies,
modelling the QCD interactions, differ significantly to those modelling the process at lower energies.
Ultimately, this creates a fractal structure within the jets of parton showers, and we expect the structure
of each sub-jet to be the same, independent of the energy scale at which the jet occurs.

As discussed in Section 2.1.2, the Feynman diagrams for these processes contain virtual propagators,
and Section 3.1 demonstrated that the mathematical terms corresponding to these virtual propagators
are proportional to

Mfi ∝
1

(pi + pj)
2 ≡

1

Q2
, (4.3)

where we let Q2 denote the invariant mass squared of the virtual propagator. Given this, and noting that
the Mandelstam variable s is of the same dimensionality as Q2, we expect certain structure in the terms
of A0

3 and A0
4. Considering the single-gluon emission antenna function, by definition this involves one

particle emission and so we expect terms of order O (1/s). Similarly, we expect terms of order O
(
1/s2

)
for the double-gluon emission antenna function, as well as its double-soft and triple-collinear limits. This
dimensionality is indeed observed in the form of our antenna functions. In applications of the antenna
functions, the Born-level matrix element is multiplied by the corresponding antenna function and then
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integrated over the possible momenta. This is demonstrated in Equation 4.4 for the case of double-gluon
emission, where we integrate over two momentum scales∫ Q2

high

Q2
low

dQ2
1dQ

2
2 · |Mfi|2Born A

0
4. (4.4)

Here we explicitly see that the combined A0
4 · dQ2

1dQ
2
2 term will therefore be dimensionless, an expected

consequence of the anticipated scale invariance within the structure of parton showers.

For future work, a direct comparison could be undertaken between calculations of |Mfi|2full from
Equation 3.51 first using current parton shower method, wherein two consecutive single-gluon emission
antenna functions are applied to |Mfi|2Born, and secondly using the initial state A0

4 given in Appendix
5. This comparison could be executed using the initial-state clustering algorithms of [3], applied to the
qq̄ → Zgg configurations generated using the methods described in Section 3.3. Here, we would expect to
see explicitly the impact of coherent double-gluon emission, accounted for by the double-gluon emission
antenna function A0

4 that isn’t captured by the iterated single-emission functions.
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Conclusion

An antenna function for double-gluon emission from a quark-antiquark pair in the initial state was
found by applying crossing symmetry to the literature antenna function for double-gluon emission from
a quark-antiquark pair in the final state. The double-soft and triple-collinear limits of this antenna
function were derived by first substituting λ parameters into the Mandelstam variables and then taking
a series expansion about λ = 0. Both the antenna function and these derived limits demonstrated the
expected scale invariance in each of its terms, a result that comes about from the fractal structure of
jets created through bremsstrahlung in high-energy particle collisions. Employing a uniform sample over
the phase space of this antenna function, enabled by the RAMBO algorithm implemented in Pythia
8.3, the antenna function was validated against corresponding matrix element calculations for double-
gluon emission evaluated using MadGraph. In a similar fashion, by employing cuts of the phase space
around the double-soft and triple-collinear points, these derived limits of the antenna function were also
compared against matrix element calculations and were observed to reproduce the limits anticipated from
their factorisation. Enabled with the initial state antenna function, the structure of interference effects
within double-gluon emissions from quark pairs in the initial state can be further explored, in the context
of its relevance for parton shower algorithms.
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Appendix

Initial State A0
4 Antenna Function

A0
4 (aq, bq̄; jg, kg) =

1

sAB

(
2s3ab

sajsbktajktbjk
+

2s2ab
sajsbksjk

+
4s2ab

sajsbktajk
− 2s2ab

sbksjktajk
+

4s2ab
sajsbktbjk

− 2s2ab
sajsjktbjk

− 4sjks
2
ab

sajsbktajktbjk
+

4s2ab
sajtajktbjk

+
4s2ab

sbktajktbjk
− 8s2ab

sjktajktbjk
+

6sab
sajsbk

− 6sab
sajsjk

− 2saksab
sajsbksjk

− 2sbjsab
sajsbksjk

− 4sab
sbksjk

− 3sjksab
sajsbktajk

+
6sab

sajtajk
− 3sbjsab

sajsbktajk
+

4sab
sbktajk

+
2saksab

sbksjktajk
+

2sbjsab
sbksjktajk

− 8sab
sjktajk

− 3sjksab
sajsbktbjk

+
6sab

sajtbjk
− 3saksab

sajsbktbjk
+

3sab
sbktbjk

+
2saksab

sajsjktbjk
− 2sbksab

sajsjktbjk
− 8sab

sjktbjk
+

3s2jksab

sajsbktajktbjk
+

3sbksab
sajtajktbjk

− 6sjksab
sajtajktbjk

− 3sjksab
sbktajktbjk

− 3saksab
sbktajktbjk

+
4saksab

sjktajktbjk
− 4saksbksab

s2jktajktbjk
+

6sab
tajktbjk

− sjksab
sajt2ajk

+
2s2aksab
s2jkt

2
ajk

+
sab
t2ajk
− sjksab

sbkt2bjk
− 4sbksab

sjkt2bjk
+

2s2bksab
s2jkt

2
bjk

+
3sab
t2bjk

+
2

saj
− 3sak

sajsbk
− 3sbj

sajsbk
+

2sak
sajsjk

+
4sbj
sajsjk

+
sbk

sajsjk
+

s2ak
sajsbksjk

+
s2bj

sajsbksjk
+

2saj
sbksjk

+
3sak
sbksjk

− 2

sjk
+

s2jk
sajsbktajk

− 3sbj
sajtajk

− sbk
sajtajk

− 2sjk
sajtajk

+
sbjsjk

sajsbktajk
− sjk

sbktajk
+

s2bj
sajsbktajk

− sak
sbktajk

− sbj
sbktajk

+
2sak

sjktajk

+
3sbj

sjktajk
+

sbk
sjktajk

− s2ak
sbksjktajk

−
s2bj

sbksjktajk
− 2saksbj

sbksjktajk
+

2s2ak
s2jktajk

− 4saksbk
s2jktajk

+
1

tajk
+

s2jk
sajsbktbjk

− 3sak
sajtbjk

+
3sbk

sajtbjk
− 3sjk

sajtbjk
+

saksjk
sajsbktbjk

+
s2ak

sajsbktbjk
− 2saj

sbktbjk

− 2sak
sbktbjk

− s2ak
sajsjktbjk

− s2bk
sajsjktbjk

+
3saj

sjktbjk
+

5sak
sjktbjk

+
2saksbk

sajsjktbjk
− 2sbk

sjktbjk

−
s3jk

sajsbktajktbjk
+

s2bk
sajtajktbjk

+
3s2jk

sajtajktbjk
+

s2jk
sbktajktbjk

− 3sak
tajktbjk

+
3sbk

tajktbjk

− 3sbksjk
sajtajktbjk

+
saksjk

sbktajktbjk
− 3sjk

tajktbjk
+

s2ak
sbktajktbjk

− 2s2ak
sjktajktbjk

− 2s2bk
sjktajktbjk

+
4saksbk

sjktajktbjk
+

2s2bk
s2jktbjk

− 4saksbk
s2jktbjk

− sbj
t2ajk

− sbk
t2ajk

+
sbjsjk
sajt2ajk

+
sbksjk
sajt2ajk

− 2s2aksbj
s2jkt

2
ajk

− 2s2aksbk
s2jkt

2
ajk

− 3saj
t2bjk
− 3sak

t2bjk
+

sajsjk
sbkt2bjk

+
saksjk
sbkt2bjk

+
4sajsbk
sjkt2bjk

+
4saksbk
sjkt2bjk

− 2sajs
2
bk

s2jkt
2
bjk

− 2saks
2
bk

s2jkt
2
bjk

)
(5.1)
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