QFT Beyond Fixed Order

Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges
Soft Bremsstrahlung in Classical E&M, and in QED. The dipole factor & coherence.

2. Infrared Singularities and Infrared Safety

IR Poles & Sudakov Logarithms. Probabilities > 1.
Summing over degenerate quantum states (KLN theorem). IRC Safety.

3. QCD as a Weakly Coupled Conformal Field Theory

The emission probability; Double-Logarithmic Approximation
The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.

= 4. Parton Showers

Differential evolution kernels; evolution scale; unitarity and detailed balance.

Sampling the Sudakov; perturbation theory as a Monte Carlo Markov Chain.
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Recap: Large Logs in QCD

Fixed-Order perturbative QCD requires Large scales (as small
enough to be perturbative = high-scale processes)

Fixed-Order QCD also requires No hierarchies:

Bremsstrahlung propagators « 1/0Q* Oiarp [GeV]

integrated over phase space « dQ*
logarithms

asl*/l In™ (Qéard/ Q]%rems) , m < 2n

— cannot truncate at any fixed order n if
upper and lower integration limits are
hierarchically different ————




Example: SUSY + Jets at LHC

Naively, QCD radiation suppressed by os=0.1
=> Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-ijet-within-a-iet ...
J J J — 100 GeV can be "soft” at the LHC

Example: SUSY pair production at LHC4, with Msysy = 600 GeV

LHC - spsla - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD

pr; > 100 GeV| oo; | 4.83 5.65 0.286 0.502 1.30
nclusive X+ 1 et ——01; | 2.80 2.74 0.136 0.145 0.73
nclusive X + 2 ets” 1—02; | 1.09 0.85 0.049 0.039 0.26

o for X + jets much larger than
naive factor-as estimate

pr.; >t 50 GeV|[ oo; |4.83 5.65 0.286 0.502 1.30 o for 50 GeV jets = larger than
o1j | 590 5.37 0.283 0.285 1.50
oo | 417 318 0.179 0.117 1.21

(Computed with SUSY-MadGraph)

total cross section

— what is going on?

All the scales are high, 01 GeV, so perturbation theory should be OK
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Harder Processes are accompanied by Harder Jets

Hard processes “kick off” showers of successively softer radiation
Fractal structure: if you look at Quer/Quaro << 1, you will resolve substructure.

So it's not like you can put a cut at X (e.g., 50, or even 100) GeV and say:
"Ok, now fixed-order matrix elements will be OK"

Extra radiation:
Will generate corrections to your kinematics

Extra jets from bremsstrahlung can be important combinatorial background
especially it you are looking for decay jets of similar pr scales (often, AM <« M)

s an unavoidable aspect of the quantum description of quarks and gluons
(no such thing as a “bare” quark or gluon; they depend on how you look at
them)

This is what parton showers are for




Evolution Equations

What we need is a differential equation
Boundary condition: a few partons defined at a high scale (Qf)

Then evolves (or “runs”) that parton system down to a low scale (the
hadronization cutoft ~ 1 GeV) — It's an evolution equation in Qf

Close analogue: nuclear decay

Evolve an unstable nucleus. Check it it decays + follow chains of decays.

Decay constant

dP(t) to
a N A(t1,t2) = exp (— /tl CN dt) = exp (—cny At)

Probability to remain undecayed in the time interval [t7,t;]

= 1 — CNAt -+ O(C?V)

Physical decay rate per unit time

dPes(t)  —dA

p— p— A <
d¢ d¢ CN (tlat)

A(ty,t) : “Sudakov Factor”
_

~

J

(respects that each of the original nuclei can
only decay if not decayed already)
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The Sudakov Factor

e D
In nuclear decay, the Sudakov factor counts:
What fraction of nuclei remain undecayed after a time f:
L2
Probability to remain undecayed in the . B . B
time interval [#;,1,] A(tl’ t2) — X ( /t1 CN dt) B ( CN At)
N y
e D

The Sudakov factor for a parton system “counts”:

The probability that the parton system doesn’t evolve (branch) when we run the
factorization scale (~1/time) from a high to a low scale (i.e., that there is no state change)

Evolution.plrlo.bakiility dPres(t) _ —dA — A(tl,t)
per unit “time dt di

1. Replace ¢y by proper QCD / QED branching densities (e.g., our dipole factor)

2. Replace t by proper definition of “shower evolution scale” ~ resolution scale.

3. Cast as Markov Chain Monte Carlo: sample 7 steps stochastically + iterative state changes.

\_ J
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1. What are the Shower Evolution Kernels?

Most bremsstrahlung is driven by
divergent propagators — simple

universal structure, independent of x
. 2(pa 'pb) .‘ d
process details 0005
N b
Amplitudes factorise in singular limits:
Partons ab rz) = DGLAP splitting kernels, with ; = energy fraction = £/, + E,)
- > al|b P(z)

‘MF—I—I(vaabaM %ggc |MF(7a_|_b7)‘2

“collinear” 2(pa - Pb)

Coherence — Parton j really emitted by .k colour dipole: eikonal

Gluon j

. g—0 Pi * Pk :
_}usoftll:|./\/lF_|_1(...77/7]7]{...)|2J% ggc ( ) |MF(...,Z,k,...)|2
(pi - i) (D * D)

Apply this many times for successively softer / more collinear emissions =» QCD fractal

+ scaling violation: g — 4mas(Q?)




(Types of Showers)

Factorisation of
(squared) amplitudes
in IR singular limits

(leading colour)

q9 8q qg
| | K . (2,) K 70 22)
¢ ¢ g\ g o q8,9q q8.9*q
q8°8q q8 8q
eikonal term collinear terms ng qu
One term for each parton
o One term for each Two terms for each
Not a priori coherent. colour connection colour connection
N :
Angular ordering re§tores Coherent by Coherent by
azimuthally averaged eikonal construction construction

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.
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2. What is time?

We are working in momentum space

Peter Skands

Resolution variable should be an energy scale O ~ 1/t

In the example with jet mass, we ran the diff eq in 7. This “resummed” the logarithms of 7.

For a parton shower, want a “universal” (observable-independent) measure

Exact choice is ambiguous. Dictates which specific “logs” our shower will resum.

Geometric mean of

No naked singularities: Q must vanish in all unresolved (infrared and collinear) limits. ~Fropeostervimaies

| Siidik
Reasonable to resum “biggest” (double) logs: motivates Q% ~ - ~ 2 = pjz_A “ARIADNE" pr
dipole factor Siik

Used by VINCIA shower

: : /" . Co developed at Monash
(Note: other choices also possible, eg “angular ordering”, other pt definitions, ...)
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3. Cast as iterative Markov-Chain algorithm

Standard Born-Level Matrix-Element calculation of de/dO (for

some generic observable 0):

H = Hard process

dos B /d<I>H MO1250 —o({ptn))

dO |Bom

Born

{p}: partons

But instead of evaluating O directly on the Born final state,
first insert a “showering operator”

{p}: partons

Born 4o
H — / d(I)H ‘M](;)) ‘2 S({p}Ha O) S : showering operator

+ shower dO |s

Unitarity: to first order (in perturbation theory), S should do nothing:
S(ipiu,0) =0(0 - OWptn)) + Olas)




The Shower Operator

Actually, we know the all-orders probability that nothing

happens:
t9 d
A(tl, t2) = exp (_/ dt _7)) Sudakov Factor
t

dt (Exponentiation)
1

Build this in, with dA/dt = probability that state does change:

(Markov Chain)

S(prx, O) = Altstart, that)0(O=O({pjx))

“Nothing Happens” — “Evaluate Observable”

dt

“Something Happens” —  “Continue Shower”

had A (gpapt. T
- [Tl (), 0
lstart




A Shower Algorithm*

*No time to explain Monte Carlo integration / sampling methods so must be taken on faith here

— 1. For each evolver, generate a random number R € [0,1]

t
. . . 1.07 .
Solve equation R = A(t;, t) for ¢ (with starting scale ;) h Branching
Can be done analytically for simple splitting kernels, S 08 phase space
else numerically and/or by trial + veto (“the veto algorithm™) 1I_Ix 0.6 *
— stochastically sampled scale t for next (trial) branching ?— 0.4
S%.

O
N

O,Oﬁ&L s e—————————————
00 02 04 06 08 1.0
To find second (linearly independent) phase-space invariant Vi = SifSige = 1=

2. Generate another Random Number, R, € [0,1]

dA(Z)
ds

I(z,1)
Solve equation R, = ——

<
for z (at scale 1), with I(z,t) = J dz
T Lz, 1) Z Z

min(t)

I, is called the “primitive function”

3. Generate a third Random Number, R, € [0,1]

Solve R, = @/(2x) tor ¢. Can now do 3D branching; construct tentative branched state.

Peter Skands

Accept/Reject based on full kinematics. Update t; = ¢. Update state (it accept). Repeat.
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Application: Quark-Gluon Jet Discrimination

Can use our simple jet-mass calculation to ask a fundamental question:
can we tell a quark-initiated jet apart from a gluon-initiated one?

Jet mass for quark-initiated jets: analytical result

d o, Cp . 5 a,Crlog T o, Cp ., .,
p(7) = — exp log” 1| = exp log” T
dT T 2 T T T 2

DLA — same result for gluon jets, but with octet colour charge Casimir Ca ~ 2C¢

Constituent Multiplicity (Parton-Shower Algorithms)
PYTHIA 8.226, /s = 14 TeV

R = 0.4, pr € [1000,1100] GeV Start from a Born-level parton
configuration, or “hard process".

p(7)

=
-
o
S

Simulate bremsstrahlung by
stochastic sampling of Sudakov
[ Quarks | tactors; adding branchings iteratively,
1 Gluons | ordered in decreasing “resolution”

Normalized)

Cross Section (
-
=
[y
(G

1

N ‘2 0.010 - (.. e p1)
g O Can include full phase space, recoils,
>~ > mass effects, running «a, ...,
0.005 - S
matching to hadronisation models
and even detector simulations.
7- 0.000 - T T T T j *
0 25 50 75 100 125 150
Constituent Multiplicity The Workhorses Of CO"Ider
Apologies; this is multiplicity not jet mass phenomenology

(did not have time to make new plot)

ll“.‘;":‘.;
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Extra Slides



On Probability Conservation a.k.a. Unitarity

Probability Conservation: P(something happens) + P(nothing happens) = 1

When (X) branches to (X+1): Gain one (X+1). Lose one (X). = A "gain-loss” differential equation.

Cast as iterative (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity.
. . M, |7
With evolution kernel ~ | "Jﬁz (typically a soft/collinear approx thereof) Typical choices
M
: " . ) 2
Evolve in some measure of resolution ~ hardness, 1/time ... ~ fractal scale p., 0% EO0, ...

“something happens”

"Nothing happens” KLN: sum over degenerate quantum
i Gk Gk

ax states = finite; infinities must cancel)

— Loop = —/Tree+F

F for “finite”

qk

Gk

qk

2Re [M(l)M(O)*} Showers neglect F = “Leading-Logarithmic” (LL) Approximation |M${ 2

- Ty
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Optional: Gluons on the Lund Plane » Origami Diagrams

lllustration

JET

In QCD, gluons are
themselves
charged, so can
radiate further
gluons

In kt
In kt

(b)

Low kt~z6

()

LUND DIAGRAM

» Each gluon
"adds” new phase
Space Cow ang|>e In 1/A In 1/A

In kt
In kt

» Lund plane turns
into an "origami

diagram”
(b) (b)

(c)

PRIMARY LUND PLANE

In 1/A In 1/A

ll“.‘;":‘.;
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Optional: Measurement of the Lund Plane for QCD Jets

Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton- Uniform density not
Proton Collisions with the ATLAS Detector that easy to see, in
ATLAS Collaboration - Georges Aad (Marseille, CPPM) et al. (Apr 7, 2020) prac:tice. ..
Published in: Phys.Rev.Lett. 124 (2020) 22, 222002 - e-Print: 2004.03540 [hep-ex] Question(s): why?
A pdf ¢ DOI — cite — datasets ATLAS (s=13TeV, 139 16", p_ > 675 GeV
-~ N 1 =
S - —09 <4
Q = y
+ L= <
—_ < - —0.8
X 2 2 %
' 10 B ~~
~— S - N
IS g =
A g\ - %
N| g 3 —_—
33 A o | e
Q/s \/O \@Q Q - .5
< R I i 2
7y O N £
% 1k Z
e 5. & 107~ G
Z S
2 Q % i 5
e : =
> : h -
%‘7%0/ ha.rd WS NS N
B collinear 0O 05 1 15 2 25 3 35 4
INn(R/AR)
LOW angle | ] ] | | 1 1 ] ] ] ] ] | | 1 1 ]
CollineaT ln(R/AR) 107" 1072

AR = AR(emission, core)
(a) Schematic representation of the LJP.
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