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Warmup: Classical Fields of a Charge in Uniform Motion
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๏To start with, consider a classical charged particle
•If it is charged, it has a Coulomb field
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Fig. 2.5 The electric field at
the position B, divided by
E(0), at a fixed time and as a
function of ϕ. The direction
of motion is the abscissa

2.5 Lorentz Invariant Exterior Forms and theMaxwell Equations

Aswas shown in Sect. 2.2.2 for the case of a fixed division of spacetime into time axis
Rt and coordinate space R3, the association of simple exterior forms over R3 to the
fields and potentials of Maxwell theory proved useful in reformulating Maxwell’s
Equations in a concise and transparent manner. On the basis of this experience it is
suggestive to interpret the observables and the potentials of Maxwell theory, written
in covariant form, as geometric objects on Minkowski space R4. In this section we
show that the field strength tensor, the Lorentz force, and the external sources can be
written as exterior forms which are even simpler than in the case of R3 and which
satisfy simple and natural equations. By the same token we show that the apparent
asymmetry between the electric field that was a one-form and the induction field that
was a two-form onR3, disappears. Finally, we provide the basis for the generalization
to non-Abelian gauge theories which are studied in Chap.5.

2.5.1 Field Strength Tensor and Lorentz Force

The tensor field Fµν(x) which in a given inertial system decomposes into observ-
able E-fields and B-fields according to (2.46), is defined on Minkowski space(
R4, g = diag(1,−1,−1,−1)

)
. Denoting the base one-forms over this space by

Lorentz boost

Cf, Eg., Scheck 2.4 (PHS3201)
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The EM fields of an electron in uniform relativistic motion 
are predominantly transverse, with 
|E | ≈ |B | ≈ γ |Erest |

a.k.a. “the method of virtual quanta” (e.g., Jackson, Classical 
Electrodynamics) or “the equivalent photon approximation” (EPA)

They interpreted this to mean that fast electrically 
charged particles can be regarded as carrying 
with them clouds of virtual photons 

That was for a charge in uniform motion.

What happens if we give it a kick?

Weiszäcker (1934) & Williams (1935) noted 
that, in the limit of a large boost, that starts to 
look a lot like (a superposition of) plane waves!
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Radiation from Accelerated Charges (Bremsstrahlung)
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๏Consider a (QED or QCD) charge that receives a kick at 
•

t = 0

Peter Skands UniversityMonash

•Much later than t0: moving charge, with boosted Coulomb field.
•No plane waves; no radiation.
•

•Before t0: Coulomb field at rest with respect to particle. 
•An observer far away sees the fields of a uniformly moving 
charge. No plane waves; no radiation.

•At t0: instantaneously replace stationary charge by one moving at velocity v’ 
•If v≠v’, the Coulomb field will need to be rearranged (sped up). 

(Analogous to the elastic-scattering form-factor situation we discussed earlier in the course)

The far-away observer experiences a disturbance in the EM field (generated around 
), which upon Fourier transformation ➤ a spectrum of plane-wave radiationt ∼ t0



Quantum Treatment
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๏Peskin & Schroeder shows the calculations for actual electrons
•I will not care about spin; will use scalar charged particles instead (for simplicity)
•We will see that we get the same result(s) in the end (in the soft limit, )

๏Feynman rules for spin-0 particle coupled to a gauge field

๏

kγ → 0
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p p′￼

k, ϵμ

−ie(p + p′￼)μ
DμϕDμϕ* = (∂μ + ieAμ)ϕ(∂μ + ieAμ)ϕ*

 terms with  + c.c.⟹ ieAμϕ(∂μϕ)*( )

1 Trivial wave function for incoming/outgoing scalars

i
p2 − m2 Scalar propagator

Scalar-Scalar-Vector vertex



p′￼

+p

k, ϵμ

k, ϵμ

p′￼

p

๏Note: in principle applies every time we disturb a charged particle!
•Expect consequences to be universal, for every vertex that involves a charged particle

๏Radiative Correction (Bremsstrahlung) to first perturbative order in : e

Kick a charged particle
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p
p′￼

Some operator that annihilates the particle with  and creates the one with p p′￼

≡ iℳ0(p, p′￼) “Born-level” amplitude for the process 
at hand (precise form not important)

−ieℳ0(p − k, p′￼)
i

(p − k)2 − m2
(p + p − k)μϵ*μ (k)

Exercise: write down the 
amplitude for this diagram



A little algebra
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๏On-shell photon has transverse polarisation; satisfies 
•   
•

๏Propagators : 

•

•

๏+ Consider soft photon limit: 
•

kμϵμ = 0
(2p − k)μϵ*μ → 2(p ⋅ ϵ*)
(2p′￼+ k)μϵ*μ → 2(p′￼⋅ ϵ*)

1
(p − k)2 − m2

=
−1

2(p ⋅ k)
1

(p′￼+ k)2 − m2
=

+1
2(p′￼⋅ k)

|k | ≪ |p0 |
ℳ0(p − k, p′￼) ∼ ℳ0(p, p′￼) ∼ ℳ0(p, p′￼+ k)
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(a.k.a. “Lorenz gauge”)



๏Amplitude for diagram with radiation before scattering becomes:

•The other amplitude (radiation after scattering) becomes

๏Squaring and integrating to get the cross section, we get:

•

๏Denoting the one-particle phase space element by  and summing over 
photon polarisations ➤ total probability density per phase-space element:

๏

 

dσ(p → p′￼+ k; ϵ) = dσ(p → p′￼) ∫
d3k

(2π)32k
e2 (p′￼⋅ ϵ)

(p′￼⋅ k)
−

(p ⋅ ϵ)
(p ⋅ k)

2

dΦ1(k)

dσ(p → p′￼+ k)
dσ(p → p′￼) dΦ1

= e2 ( 2(p ⋅ p′￼)
(p′￼⋅ k)(p ⋅ k)

−
m2

(p ⋅ k)2
−

m2

(p′￼⋅ k)2 )

→ + eℳ0(p, p′￼)
(p′￼⋅ ϵ*)
(p′￼⋅ k)

Probability for soft photon bremsstrahlung
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−ieℳ0(p − k, p′￼)
i

(p − k)2 − m2
(p + p − k)μϵ*μ (k) → − eℳ0(p, p′￼)

(p ⋅ ϵ*)
(p ⋅ k)

a.k.a. the “soft-eikonal” 
or “dipole” factor

Same as 
classical result!



Infrared Structure of Gauge Field Theory Amplitudes
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๏We considered a generic process: a charged particle got kicked
•Expect to see this expression any time we look at the (soft limit of) a first-order QED 
correction to any scattering process involving a gauge-charged current:

๏ Note: same expression for gluon emission in QCD, with 
•(For completeness, note that for particles with spin there are further universal terms, called 
collinear which are also relevant to bremsstrahlung and which can be derived in a similar 
manner; here we focused only on the soft limit.)

๏Some immediate follow-up questions:
•What is the total probability to emit a photon? How about two photons; or more?
•What if there is more than one charged particle that gets kicked? (Or one gets several kicks?) 
•What about if the charged particle is not pointlike (e.g., a charged hadron)? 
•How does this relate to gluons and jets in QCD? How about weak SU(2)L? Other (gauge) theories?

e2 → g2
s NC

Peter Skands UniversityMonash

dσpp′￼+γ = e2 ( 2(p ⋅ p′￼)
(p′￼⋅ kγ)(p ⋅ kγ)

−
m2

(p ⋅ kγ)2
−

m2

(p′￼⋅ kγ)2 ) dΦγ dσpp′￼

“Born process” with charge 
that got kicked from  to 

(Before adding photon)
p p′￼



Towards the total probability
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๏Want to integrate the dipole factor over d3k = k2 dk dcos θk dφk
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Looks divergent for small  (soft limit; our approximation should be OK there), and/or 
for small  ,   (collinear, with  or  respectively). But let’s forge ahead …

k
θkp θkp′￼ p p′￼

To do  integral, separate the two collinear pole structures, by adding and subtracting 
two terms, then integrate half of the dipole factor with each combination, using:

φ

∫
2π

0

dφkp

4π (
1 − cos θpp′￼

(1 − cos θkp)(1 − cos θkp′￼)
+

1
1 − cos θkp

−
1

1 − cos θkp′￼) =
1

2(1 − cos θkp) (1 +
cos θkp − cos θpp′￼

|cos θkp − cos θpp′￼| )
Only divergent for , not for  (and vice versa for the other half)θkp → 0 θkp′￼ → 0

๏Already an interesting result!
•

Introduction to Event Generators Bryan Webber, MCnet School, 201429

● Radiation function can be separated into two parts containing collinear singularities along
lines i and j. Consider for simplicity massless particles, vi,j = 1. Then Wij = W i

ij + W j
ij

where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
−

1

1 − cos θjq

«

.

● This function has remarkable property of angular ordering. Write angular integration in polar
coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq. Performing azimuthal integration,
we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij, otherwise 0.

i

j

Thus, after azimuthal averaging,
contribution from W i

ij is confined to
cone, centred on direction of i, extending
in angle to direction of j. Similarly, W j

ij,
averaged over φjq, is confined to cone
centred on line j extending to direction of
i.

29

p

p’

Averaged over , there is zero soft radiation 
outside cone(s) with opening angle  

φk
θpp′￼

The kp term of the partitioned eikonal 
is only non-zero in a cone around p

The kp’ term of the partitioned eikonal

Radiation before and after 
scattering adds coherently!


