QCD Strings - junctions, strangeness, popcorn, and beyond

Javira Altmann - Monash University

- > String Hadronisation
 - > (Heavy flavour) **baryon production**
 - Strangeness
 - > Diquark production

 \succ Confinement in High-Energy Collisions \rightarrow the Lund String Model

Confinement in high energy collisions

In high-energy collisions, such as proton-proton collisions at the LHC, need a dynamical process to ensure partons (quarks and gluons) become **confined** within hadrons

i.e. non-perturbative parton \rightarrow hadron map

Model requirements

 \succ Colour neutralisation > Dynamical mapping to on-shell hadrons

Example of $pp \rightarrow t\bar{t}$ event From PYTHIA 8.3 guide arXiv:2201.11601

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lattice QCD "Cornell potential" $V(r) = -\frac{a}{-} + \kappa r$ with $\kappa \sim 1$ GeV/fm

shows us the potential energy of a colour singlet $q\bar{q}$ at separation distance r

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lund string model

model the colour confinement field as a string

 \succ Strings form between partons that form overall **colour-singlet** states

e.g. colour-anticolour singlet combination to make a "dipole" string

3

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lund string model

model the colour confinement field as a string

 \succ Strings form between partons that form overall **colour-singlet** states

e.g. colour-anticolour singlet combination to make a "dipole" string

High energy collisions \rightarrow partons move apart at high energies

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lund string model

model the colour confinement field as a string \succ Strings form between partons that form overall **colour-singlet** states

3

Partons \rightarrow Hadrons

Hadronisation:

- These happen at **non-perturbative** scales, **can't use** $P_{g \to q\bar{q}}(z)$
- Instead use the **Schwinger mechanism**

Schwinger mechanism QED

É

Non-perturbative creation of e^+e^- pairs in a string electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{\kappa/\pi}\right)$$

Gaussian suppression of high $m_{\perp} = m_{\perp}$

J. Altmann 🌄 Monash University

Partons \rightarrow Hadrons

Hadronisation:

- Instead use the **Schwinger mechanism**

Schwinger \rightarrow **Gaussian** p_{\parallel} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

Heavy quarks are only produced from hard processes → must be **string endpoints**

Partons \rightarrow Hadrons

Hadronisation:

- Instead use the **Schwinger mechanism**

Schwinger \rightarrow **Gaussian** p_{\parallel} **spectrum** and heavy

Discrepancies with LHC data

J. Altmann 🌄 Monash University

Discrepancies with LHC data

J. Altmann 😹 Monash University

Baryon formation: diquark-antidiquark pair creation

Shown **dipole strings** formed due to the **colour-anticolour singlet** state

QCD is decribed by **SU(3)**, so there should exist a **red-green-blue** colour singlet state

Baryon production

e.g. a **dipole** string using the red-antired colour singlet combination

Baryon formation: diquark-antidiquark pair creation

Shown **dipole strings** formed due to the **colour-anticolour singlet** state QCD is decribed by **SU(3)**, so there should exist a **red-green-blue** colour singlet state

What about the **red-green-blue** colour singlet state?

Baryon production

e.g. a **dipole** string using the red-antired colour singlet combination

Baryon formation: diquark-antidiquark pair creation

Shown **dipole strings** formed due to the **colour-anticolour singlet** state QCD is decribed by **SU(3)**, so there should exist a **red-green-blue** colour singlet state

What about the **red-green-blue** colour singlet state?

Baryon production

e.g. a **dipole** string using the red-antired colour singlet combination

Including Junctions

	O	Ν	S

Junctions

Junctions

Discrepancies with LHC data

J. Altmann 🌄 Monash University

Strangeness Enhancement

Strange production in the string picture

Use **Schwinger mechanism** to model tunnelling of quark-antiquark pairs created by string breaks

Schwinger \rightarrow Gaussian p_{\perp} spectrum and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

Schwinger mechanism QED

Non-perturbative creation of e^+e^- pairs in a string electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_1^2}{\kappa/\pi}\right)$$

 $\kappa = \text{string tension}$

increasing string tension \rightarrow reducing mass suppression \rightarrow more strange quarks

Strangeness Enhancement

Rope hadronisation / Closepacking

 $N/N(\pi^{+}\pi^{-})$ vs. $(dN_{ch}/d\eta)$ for p-p 7 TeV, p-Pb 5.02 TeV and Pb-Pb 2.76 TeV

J. Altmann 😹 Monash University

Strangeness Enhancement

Discrepancies with LHC data

J. Altmann 🌄 Monash University

Reexamine baryon formation via diquark production

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio Reexamine baryon formation via **diquark production**

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio Reexamine baryon formation via diquark production

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

blue $q\bar{q}$ fluctuation on the string

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio Reexamine baryon formation via diquark production

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

What would happen if we put this **red string** next to another string? e.g. a **blue string**

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio Reexamine baryon formation via **diquark production**

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

What would happen if we put this **red string** next to another string? e.g. a **blue string**

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio Reexamine baryon formation via **diquark production**

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

What would happen if we put this **red string** next to another string? e.g. a **blue string**

As seen before, junction baryon production is important for heavy flavour baryon production and for the Λ/K_S ratio Reexamine baryon formation via **diquark production**

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

blue $q\bar{q}$ fluctuation breaks nearby blue string, preventing diquark formation

Popcorn destructive interference

Results — ongoing

Cannot describe both baryon-to-meson ratios simultaneously

Taken from slide by Lorenzo Bernadinis: PhD student currently in Trieste undertaking tuning project with the model

Future prospects

There of course remains a lot of remaining work and exciting future prospects for the string model, some of which are listed below

Beyond Lund strings

> Non-constant tensions e.g. time dependent string tensions, string excitations, and their effect on correlations

Baryon production

> Strange heavy baryon descriptions e.g. Ξ_c/Λ_c

- $> \Lambda_h / B^0$ overprediction
- $> \Lambda/K$ simultaneously with p/π

Extending strings to heavy ion collisions

Using junction networks to describe exotica

Return to examining e^+e^- collision data

 \succ is there multiplicity dependence for strangeness?

> Useful for triplet vs octet string studies, a useful probe for rope hadronization/closepacking

J. Altmann 😹 Monash University

Thank you for listening!

