Studies of particle production in $pp \rightarrow jets$ using transverse multiplicity estimators

Clear observations of strangeness enhancement and "flow"-like effects with pp charged multiplicity in minimum-bias events

Recently, ALICE presented similar measurements in events with a hard (jet) trigger: complementary probe of central impact parameters.

Used "KNO-like" variable $R_T = N_{ch}^{TRNS} / \langle N_{ch}^{TRNS} \rangle$ as activity classifier (Martin, PS, Farrington, Eur.Phys.J.C 76 (2016) 5, 299), with TRNS a geometric region transverse to the leading jets ~ a measure of **underlying-event** activity.

I comment on R_T , on the ALICE measurements, and on wishes for the future.

Peter Skands (Monash University) ALICE Week, November 2020, CERN

What is the "TRANSVERSE" Region?

Multiplicity Probes of the Underlying Event

pm Minimum-Bias (MB) to the Underlying Event (UE)

Multiple Parton Interactions with impact-parameter dependence (eg PYTHIA): Rise from minimum-bias to UE interpreted as a **biasing effect**. Small pp impact parameters → larger matter overlaps → more MPI higher probability for a hard interaction.

MPI in Minimum-Bias and UE

Aim: study UE properties (<p_>, strangeness, ...) as function of UE **multiplicity** ~ like we do in min-bias

Multiplicity Probes of the Underlying Event

TOWARD region - p_T spectrum

TRANSVERSE region - p_T spectrum

TRANSVERSE region: MC Comparison

Solid lines: PYTHIA 8.244 Dashed Lines: EPOS LHC

But remember: here we look TRANSVERSE to the jet. More challenging than collinear fragmentation.

Interestingly (?) something similar was seen at LEP

TRANSVERSE region: Comparison to LEP?

Pythia describes a wide range of LEP event shapes, jet rates, and particle spectra well

A longstanding significant exception are the p_T distributions transverse to the main jet axis \rightarrow

to compare with the **no-UE** events we have in e^+e^-

(However as defined here, these observables are not directly comparable. They cover different regions, have different trigger biases, different q vs q Born-level starting points, and different contributions from extra jets)

See eg PS et al., Eur.Phys.J.C 74 (2014) 8, 3024

Strangeness

2019 analysis: strangeness ratios **as functions of p**_T Would have liked to start from p_T -integrated $\langle N_X \rangle / \langle N_Y \rangle$ as functions of R_T (that would still be useful; Yields are changing at the same time as the p_T spectra. Yields first, then spectra.)

EPOS has the $\langle strangeness \rangle$ but not the right R_T dependence.

Baryons: crucial to get full picture; require the formation of diquarks and/or colour-epsilon structures in the confinement field.

EPOS predicts large high-p_T baryon fractions at high R_T not seen in data PYTHIA underpredicts baryon fractions, especially Ξ at high R_T Would be interesting to test with QCD CR, Rope Hadronisation, and Shoving

N_{ch}: cleanest / easiest to meausure

But quite "infrared unsafe". E.g., a K⁺ always counts as one particle, but a K⁰_S either counts as zero (if treated as stable or decaying to $\pi^0\pi^0$) or 2 if decaying to $\pi^+\pi^-$. Can lead to counter-intuitive biases eg in strangeness fractions vs R_T

Alternatively N_{inc} = Identifiable weakly decaying strange hadrons ($K_{S}^{0}, \Lambda, \Sigma, \overline{\Sigma}, \Xi, \Omega$) + longlived prompt charged hadrons ($\pi^{\pm}, K^{\pm}, p^{\pm}$)

Less weird biases (but prompt π^0 still "invisible"; use EM information?)

Alternatively measure UE activity in complementary (non-overlapping) region (eg N_{ch}^{FWD}) Must be correlated with activity in measurement region to be useful. If using N_{ch}^{FWD} how to distinguish between **low-angle ISR jets** and events with **many MPI**? Require Forward AND Backward coincidence? Forward AND Inclusive Central? Exploit momentumconservation (anti-)correlation between ISR and jet(s) from hard scattering?

Using Jets to Define $\varphi = 0$:

Instead of hardest track, use a clustered (track) **jet** to define $\varphi = 0$. Brings in information from more than a single (charged) particle. Capability to use jets can then also be used e.g. to define **exclusive 2-jet events**...

The TransMIN Region and Exclusive 2-Jet Events

Both types studied at CDF, but I haven't seen them much since.

Multiplicity Probes of the Underlying Event

a.k.a. "back-to-back" events

Exclusive 2-jet events

Less contaminated by bremsstrahlung jets

Require **observed away-side jet** (with similar p_T and in angular region that prevents overlap with TRNS)

A (progressive) Theorist's View

Start with most inclusive measures of activity $\sim sum(p_T)$, N_{inc} Express next-level quantities as ratio to first, and so on Emphasises broad event features first > progressively finer details Similarly, spectra in order of mean, width, then (de)tails of spectrum.

(+ Spin ladder!)

Eagerly awaiting baryon-meson correlations and Λ/K studies

+ baryon-(anti)baryon + dependence on activity estimator $(N_{ch}/N_{inc}/R_T)$? Correlations are key to understanding detailed particle production mechanisms.

Further complementary studies by ALICE:

In min-bias context, interesting to probe "jetty" vs isotropic events at high multiplicities. Several studies carried out by ALICE using transverse **spherocity** classifier; not covered here.

Charm Baryon fractions (**huge** enhancements up to ~ 20 times e^+e^- !)

THANK YUU

Extra Slides

Summary: <pT> Comparison between regions

Multiplicity Probes of the Underlying Event

NEAR: <p_> drops as more soft UE is added underneath the jet, then flattens

AWAY ~ washed-out version of NEAR

TRNS: $< p_T >$ increases ~ linearly with R_T , similar to trend in high-N_{ch} min-bias? Eventually "catches up" with the other regions (& then presumably dominates there too)

> Interesting that both models (PYTHIA and EPOS) **fail** at lowest R_T

Interesting to follow up on!

Related (or not) to LEP p_{Tout} discrepancy?